
Namespaces (1)

As in most cases a software product includes modules developed by different programmers,

it is almost impossible to ensure the uniqueness of classnames. To overcome this difficulty,

namespaces were introduced:

namespace namespace_name

{

 body

} // semicolon not needed

The body may include class declarations, global variable declarations, function declarations,

etc. A namespace can be defined in several parts spread over multiple files. Example:

namespace TimeDate // file *.h

{

 class Date { …….. };

 class Time { …….. };

 class Timestamp { …….. };

}

namespace TimeDate // file *.cpp

{

 Date::Date(int d, int, m, int y) {…………. }

 ………………………………………………

}

Namespaces (2)

If we do not specify a namespace, our code is still in a namespace: it is the anonymous

global namespace.

Namespaces may be nested: a namespace declaration may contain other namespaces.

The complete names of classes, functions and variables include also the complete list of

namespaces separated by scope resolution operator (::), for example TimeDate::Date or

Coursework::TimeDate::Timestamp.

namespace TimeDate

{

 ………………………………………………

// In this code section for classes, functions and variables declared in namespace TimeDate

// the complete name is not needed.

// For classes, functions and variables not declared in namespace TimeDate the complete

// name is necessary.

// For classes, functions and variables declared in anonymus namespace the complete

// name starts with ::

}

The C++ standard classes are from namespace std.

Namespaces (3)
Example:

int main()

{

 string abc("ABC"); // error

 // our code is in anonymous namespace, but C++ standard class

 // string is from namespace std.

 std::string def("DEF"); //correct

 ……………..

}

To facilitate the code writing put directive using to the beginning of your source code:

using namespace namespace_name;

or

using namespace_name::class_name;

Example:

using namespace std;

 // if string is the only standard class you need, you may write using std::string

int main()

{

 string abc("ABC"); // now correct

…………………….

}

C++ standard library

Standard classes for:

• Input and output

• String processing

• Exception handling

• Containers (vectors, linked lists, etc.)

• Algorithms for container handling

• Clocks and timers

• Multithreading

• Threads synchronization

• Random numbers

• Complex numbers

• Internationalization

• Regular expressions

I/O streams (1)

To stdout (command prompt window): printf, wprintf

printf("%d\n", i);

wprintf (L"%d\n", i);

To a stream: fprintf, fwprintf

fprintf(stderr, "%s\n", "Error");

fprintf(stdout, "%s\n", "Error"); // the same as printf("%s\n", "Error");

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+");

fwprintf(pFile, L"%d\n", i);

To a memory field: sprintf, swprintf, sprintf_s, swprintf_s

char pc[20];

sprintf(pc, "%d\n", i);

sprintf_s(pc, 20, "%d\n", i);

wchar_t pwc[40];

swprintf(pwc, L"%d\n", i);

swprintf_s(pwc, 40, L"%d\n", i);

If the buffer is too short, sprintf_s and swprintf_s return empty string, but sprintf and

swprintf crash.

I/O streams (2)

#include <iostream> // obligatory

#include <iomanip> // may be needed for manipulators

cin – global object of class istream, reads data from keyboard (more officially, from

input console).

cout – global object of class ostream, writes data to the command prompt window

(more officially, to output console).

cerr – global object of class ostream, writes data to the error console (mostly the same

as output console).

Class istream has operator overloading function operator>>. Class ostream has operator

overloading function operator<< . Those two functions are for formatted I/O, thus

replacing scanf and printf. The full description of istream and ostream is on pages:

http://www.cplusplus.com/reference/iostream/

http://www.cplusplus.com/reference/istream/istream/

http://www.cplusplus.com/reference/ostream/ostream/

Examples:

int i = 10, j = 20; double d = 3.14159; char *p = "abc";

cout << i; // printf("%d", i);

cout << i << ' ' << d << ' ' << p << endl; // printf("%d %lg %s\n", i, d, p);

// possible because the return value of operator<< is ostream&

 // endl means line feed

http://www.cplusplus.com/reference/iostream/
http://www.cplusplus.com/reference/istream/istream/
http://www.cplusplus.com/reference/ostream/ostream/

I/O streams (3)

int i = 10, j = 20;

double d = 3.14159;

cout << "i = " << i << " j = " << j << endl; // printf("i = %d j = %d\n", i, j);

cerr << "Unable to open file" << endl; // fprintf(stderr, "Unable to open file\n");

char buf[100];

cout << "Type your name" << endl;

cin >> buf;

cin and cout support basic types like char, char *, int, long int, double, etc. For more

sophisticated formatting use manipulators. Some examples of them:

To get integers in hexadecimal format use hex:

cout << hex << i << endl; // printf("%x\n", i);

The next integers will be also printed as hexadecimal numbers. To return to decimal use

manipulator dec:

cout << dec << j << endl; // printf("%d\n", j);

To set the output field width for numerical data use setw:

cout << setw(6) << i << ' ' << j << endl; // printf("%6d %d\n", i, j);

To set the number of decimal places use setprecision:

cout << setprecision(4) << d << endl; // printf("%.4lg\n", d); we get 3.142

I/O streams (4)

To specify the character used for padding use setfill:

int i = 255;

cout << setfill('0') << setw(6) << i << endl; // printf("%06d\n", i);

Class ostream has also two functions: write to print a block of data and put to print just

one character:

char *p;

cout.write(p, 2); // prints the first 2 characters, no formatting

cout.put(*p); // prints the first character , no formatting

Input with cin has a problem: whitespace is considered as the end of token:

char buf[100];

cout << "Type your name" << endl;

cin >> buf; // types John Smith

cout << buf << endl; // prints John

Solution:

char buf1[100], buf2[100];

cout << "Type your name" << endl;

cin >> buf1 >> buf2;

cout << buf1 << ' ' << buf2;

I/O streams (5)
There is another (and better) solution – use istream function get():

char buf[100];

cout << "Type your name" << endl;

cin.get(buf, 100); // types John Smith

cout << buf << endl; // prints John Smith

Generally:

char c, buf[256], delim = ' ';

cin.get(c); // reads the typed character, reading starts when the user has pressed ENTER

if (cin.peek() != EOF) { // \'n' stays in cin, we need to get rid of it.

 cin.get(c); // with peek() we can check wether the cin is empty

 // peek() returns the first character in cin but does not pop it out

 // if the cin is empty, peek() returns constant EOF

}

cin.get(buf, sizeof buf); // reads max (sizeof buf – 1) characters, stores the result as C string

 // reading starts when the user has pressed ENTER

if (cin.peek() != EOF) { // \'n' stays in cin, we need to get rid of it.

 cin.get(c);

}

cin.get(buf, sizeof buf, delim); // as previous, but reads until delimiter, here until space

do { // delimiter and following to it characters stay in cin

 cin.get(c);

} while (c != '\n');

I/O streams (6)

It is more comfortable to use istream function getline():

cin.getline(buf, sizeof buf); // Reads max (sizeof buf – 1) characters, stores the result as C

// string. Reading starts when the user has pressed ENTER. '\n' is removed from cin.

cin.get(buf, sizeof buf, delim); // As previous, but reads until delimiter, here until space.

// Delimiter is removed from cin but the following to it characters stay.

For our own classes we may write our own operator>> and operator<< functions. Example:

ostream &operator<<(ostream &ostr, const Date &d)

{ // friend, out of classes

 const char MonthNames[12][12] = { "January", "February", "March", "April", "May",

 "June", "July", "August",

 "September", "October", "November", "December" };

 ostr << d.Day << ' ' << MonthNames[d.iMonth - 1] << ' ' << d.Year << endl;

 return ostr;

}

Date d(11, 3, 2019);

cout << d << endl; // prints 11 March 2019

To use Unicode and wchar_t, use wcout and wcin, for example:

int i = 10, j = 20;

wcout << L"i = " << i << L" j = " << j << endl; // printf(L"i = %d j = %d\n", i, j);

File operations in C (1)
To work with a disk file, our first task is to open it:

FILE <pointer_to_struct_typedefed_as_FILE> = fopen(<filename_as_string_constant>,

<mode_as_string_constant>);

Example:

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+"); // open text file data.txt for writing and

// reading

struct with typedef name FILE is defined in stdio.h. We do not need to know its attributes.

To avoid problems specify the complete path to the file. Do not forget that backslash as

character constant is '\\'.

Binary files (character 'b' in mode string) are handled as byte sequences. Text files

(character 't' in mode string) consist of rows of text. Each row is terminated by two

characters: carriage return or CR or '\r' (0x0D) and line feed or LF or '\n' (0x0A).

To see the contents of file use freeware utility HxD (https://mh-nexus.de/en/hxd/):

https://mh-nexus.de/en/hxd/

File operations in C (2)
The access modes are:

Mode Access

"r" For reading only. If the file was not found, fopen returns null pointer.

"r+" For reading and writing. If the file was not found, fopen returns null pointer.

"w" For writing only. If the file was not found, creates it. If the file already

exists, deletes its contents.

"w+" For reading and writing. If the file was not found, creates it. If the file

already exists, deletes its contents.

"a" For writing only. If the file was not found, creates it. If the file already

exists, its contents is kept and the new data is appended.

"a+" For reading and writing. If the file was not found, creates it. If the file

already exists, its contents is kept and the new data is appended.

The fopen mode string must specify the file type (binary or text) as well as the access

mode. Examples: "rb", "at+" .

If you have finished the operations with file, close it:

fclose(pFile);

File operations in C (3)
To write into a file use function fwrite:

<number_of_written_items> = fwrite(<pointer_to_data_to_write>, <size_of_data_item>,

<number_of_items_to_write>, <pointer_to_FILE_struct>);

Example:

#pragma warning (disable: 4996) // for Visual Studio function fopen is unsafe. To

// suppress the compiler error message use this pragma

char *pData = (char *)malloc(100);

……………………………………. // fills the array with data

FILE *pFile = fopen("c:\\temp\\data.txt", "wt");

if (!pFile)

{ // Good programming practice: check always

printf("Failure, the file was not open\n");

return;

}

int n = fwrite(pData, 1, 100, pFile); // 100 characters, one byte each

if (n != 100)

{ // Good programming practice: check always

printf("Failure, only %d bytes were written\n", n);

}

fclose(pFile);

File operations in C (4)

If you want to store a string, remember that to mark the end of row use '\n' only. '\r' will be

added automatically.

Example:

const char *pData[] = { "Al Capone\n", "John Dillinger\n" };

FILE *pFile = fopen("C:\\Temp\\Data.txt", "wt+");

if (pFile)

{

fwrite(pData[0], 1, strlen(pData[0]), pFile);

// Stores without terminating zero.

// fwrite(pData[0], 1, strlen(pData[0]) + 1, pFile); // with terminating zero

fwrite(pData[1], 1, strlen(pData[1]), pFile);

fclose(pFile);

}

File operations in C (5)
Function fwrite may not store the data immediately. There is an inaccessible for us system

buffer and the data is collected into it. The writing is automatically performed when the buffer

is full. In this way time is economized. Function fflush forces the system to perform the

writing immediately:

fflush(<pointer_to_FILE_struct>);

The file has an associated with it inner pointer that specifies the location to where the first

written byte will be placed. If the opening mode was "w", then right after opening the pointer

points to the beginning of file. If the opening mode was "a", right after opening the pointer

points to the first byte after the end of file. After each writing the system shifts the pointer to

the byte following the last written byte.

If the opening mode was "w", you may select the location to where the first written byte will

be placed or in other words, you may shift the pointer before writing:

fseek(<pointer_to_FILE_struct>, <offset>, <origin>);

Origin is specified by constants defined in file stdio.h. They are SEEK_CUR (current

position), SEEK_END (end of file) and SEEK_SET (beginning of file). Offset specifies the

number of bytes from the origin. Examples:

fseek(pFile, 10, SEEK_SET); // put the pointer on the 10-th byte of file

fseek(pFile, -sizeof(struct Date), SEEK_END); // shift the pointer back to overwrite the last

// struct Date

If the opening mode was "a", the new data is always appended. Shifting with fseek is ignored.

File operations in C (6)
To read from a file use function fread:

<number of_read_items> = fread(<pointer_to_buffer_for_read_data>,

<size_of_data_item>, <number_of_items_to_write>, <pointer_to_FILE_struct>);

Example:

char *pData = (char *)malloc(100);

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+");

if (pFile)

{

int n = fread(pData, 1, 100, pFile); // 100 characters, one byte each

if (n != 100)

{ // it may be not a failure, simply there was no data

printf("Only %d bytes were read\n", n);

}

fclose(pFile);

}

In case of text files the carriage return – line feed pairs ("\r\n") at the row ends are replaced

by line feeds.

Use fseek to specify the location of the first byte to read. It is possible in each mode, even

in case of "a+". After reading the file pointer is shifted to the first not read byte.

File operations in C++ (1)

For input into files and output from files:

#include <fstream> // http://www.cplusplus.com/reference/fstream/fstream/

fstream File; // File is an object of class fstream

To open file use method open:

open(file_name_string, mode)

Filename: const char *, in Windows also const wchar_t *.

fstream static members for modes:

1. app - set the stream position indicator to the end of stream before each output operation.

2. ate - set the stream position indicator to the end of stream on opening.

3. binary - consider the stream as binary rather than text.

4. in - allow input operations on the stream.

5. out - allow output operations on the stream.

6. trunc – discard the current content, assume that on opening the file is empty.

To join the modes use bitwise OR. Example:

File.open("c:\\temp\\data.bin", fstream::out | fstream::in | fstream::binary);

To check the success call right after opening method good(). It returns 0 (failed) or 1

(success).

To close the file use method close().

http://www.cplusplus.com/reference/fstream/fstream/

File operations in C++ (2)

To operate with text files, fstream has overloaded functions operator>> and operator<< that

work like the corresponding functions of ostream and istream. For example:

fstream File;

File.open("C:\\Temp\\data.txt", fstream::out | fstream::in | fstream::trunc); // not binary!

if (!File.good())

{

 return;

}

int arr1[10], arr2[10];

for (int i = 0; i < 10; i++)

 arr1[i] = i;

for (int i = 0; i < 10; i++)

 File << arr1[i] << ' '; // converts into text, in file 0 1 2 3 4 5 6 7 8 9

File.seekg(ios_base::beg); // shifts the position indicator to the beginning, see the next slide

for (int i = 0; i < 10; i++)

 File >> arr2[i]; // converts into integers

for (int i = 0; i < 10; i++)

 cout << arr2[i]; // prints 0123456789

File.close();

File operations in C++ (3)

For reading from binary files (i.e. without formatting) use method read().

fstream_object_name.read(pointer_to_buffer, number_of_bytes_to_read);

To check the success use method good(). Method gcount() returns the number of bytes that

were actually read. Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::in | fstream::binary);

File.read(arr, 100 * sizeof(int));

if (!File.good())

 cout << "Error, only " << File.gcount() << " bytes were read!" << endl;

To shift the reading position indicator use method seekg():

int n;

File.seekg(ios_base::beg + n); // n bytes from the beginning

File.seekg(ios_base::end - n); // n bytes before the end

File.seekg(ios_base::cur + n); // n bytes after the current position

File.seekg(ios_base::cur - n); // n bytes before the current position

n = File.tellg(); // returns the current position

File operations in C++ (4)

To read from text or binary files byte by byte use method get(). Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::in | fstream::binary);

for (int i = 0; File.good() && i < 100 * sizeof(int); i++) {

 *((char *)arr + i) = File.get();

}

Suppose our text file consists of words separated by space. When a word is retrieved, we want

to analyze it immediately:

char buf[1024];

fstream File;

File.open("C:\\Temp\\data.txt", fstream::in);

while(1) {

 for (int i = 0; i < 1024; i++) {

 if (File.peek() == ' ') // see what is there but do not read out

 break; // jump to analyze the current word

 else

 *(arr + i) = File.get(); // read the next character of the current word

 }

 ………………………………….

}

File operations in C++ (5)
If the text in file is divided into rows separated by ´\n', we may use method getline():

char buf[256], delim = ' ';

File.getline(buf, sizeof buf); // reads max (sizeof buf – 1) characters, stores the result as C

 // string. '\n' is discarded

File.getline(buf, sizeof buf, delim); // here '\n' is replaced by another delimiter

Also, the reading stops when the end of file is reached. Example:

while (true)

{

 File.getline(buf, sizeof buf);

 ………………………………. // process the retrieved text

 if (File.eof())

 {

 break; // end of file is true, stop processing

 }

}

You can also check the reading result with methods good() and fail():

File.getline(buf, sizeof buf);

if (File.fail())

{ // the buffer is full but '\n' or other delimiter was not found

 …………………………..

}

File operations in C++ (6)

For writing into binary files (i.e. without formatting) use method write.

fstream_object_name.write(pointer_to_data_write, number_of_bytes_to_write);

To check the success use method good(). Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::out | fstream::binary);

File.write((char *)arr, 100 * sizeof(int));

if (!File.good())

 cout << "Error, failed to write!" << endl;

To shift the writing position inidicator use method seekp() (similar to seekg()). To get the

current location use method tellp().

To write byte by byte use method put():

for (int i = 0; i < sizeof(int) * 100; i++)

 File.put(*((char *)arr + i));

The data to write are accumulated in an inner buffer and will be actually written when the

buffer is full, when the stream is closed or goes out of scope. Method flush() explicitly tells

the stream to write into file immediately:

File.flush();

C++ standard exceptions (1)

#include <exception> // see http://www.cplusplus.com/reference/exception/exception/

try {

 ……………………… // may throw an object of class exception

}

catch(const exception &e) {

 ………………………….. // processing the exception

}

Example:

try {

 int n;

 cin >> n;

 if (n <= 0)

 throw exception("Wrong length"); // create exception object, specify the error message

 …………………………………

}

 catch(const exception &e) {

 cout << e.what() << endl; // what() returns the error message

 return;

}

http://www.cplusplus.com/reference/exception/exception/

C++ standard exceptions (2)

We may derive from the standard exception class our own exception, adding attributes that

describe the abnormal situation. C++ standard presents also some additional classes derived

from exception, for example invalid_argument, out_of_range, system_error, overflow_error,

underflow_error, etc. Those classes do not introduce new members additional to members

inherited from exception. Throwing of exceptions of different classes simply help to

ascertain the reason of failure without analyzing the text in error message. Example:

try {

 ………………………………… // some code

 }

 catch(const invalid_argument &e1) {

 ………………………………… // do something

}

 catch(const out_of_range &e2) {

 ………………………………… // do something;

}

 catch(const exception &e3) { // all the other possible exception types

………………………………… // do something

}

C++ standard exceptions (3)

The C++ standard allows to add to function header the list of exceptions that this

function may throw, for example:

void fun(void *p, int i) throw (out_of_range, invalid_argument)

{ // throw list informs the user about exceptions the function may throw

if (i < 0)

 throw out_of_range("Failure, index is negative");

if (!p)

 throw invalid_argument ("Failure, no object");

………………………..

}

The throw list is not compulsory. If present, it must be included also into the prototype:

void fun(void *, int) throw (out_of_range, invalid_argument);

To emphasize that the current function does not throw exceptions, you may replace the

throw list with keyword noexcept, for example:

void fun() noexcept;

In Visual Studio the throw list may cause compiler warnings. To suppress them write at

the beginning of your file:

#pragma warning(disable : 4290)

C++ strings (1)

#include <string> // see http://www.cplusplus.com/reference/string/

Constructors:

string s1("abc"), // s1 contains characters a, b and c

 s2("abc", 2), // s2 contains characters a and b (the first two)

 s3(5, 'a'), // s3 contains 5 characters 'a'

 s4(s1), // s4 is identical with s1

s5(s1, 1), // s5 contains characters b and c (from position 1)

 s6 = s1, // copy constructor, s6 is also "abc"

s7; // empty string, the alternative is s7("");

Examples with memory allocation:

string *ps1 = new string("abc"), // ps1 points to string that contains characters a, b and c

 *ps2 = new string(*ps1), // ps2 points to string that contains characters a, b and c

*ps3 = new string; // ps3 points to empty string, alternative is new string("")

In case of Unicode use wstring:

wstring ws(L"abc"), pws = new wstring(5, L'a');

http://www.cplusplus.com/reference/string/

C++ strings (2)
Get string in C format:

string s1("abc");

const char *p = s1.c_str();

However, if we later change the string s1, p may start to point to a wrong place. In case of

Unicode:

wstring ws1(L"abc");

const wchar_t *p = ws1.c_str();

Input and output:

string s1("abc");

cout << s1<< endl;

cout << s1.c_str() << endl;

wstring ws1(L"abc");

wcout << ws1 << endl;

wcout << ws1.c_str() << endl;

string s2;

cin >> s2; // reads until space

std::getline(cin, s2); // reads until ENTER , not a member of a class

wstring ws2;

wcin >> ws2;

std::getline (wcin, ws2);

C++ strings (3)

Prototypes of functions for conversions from string:

int std::stoi(string_or_wstring); // but stou returning unsigned int is not defined

long int std::stol(string_or_wstring);

long long int std::stoll(string_or_wstring);

unsigned long int std::stoul(string_or_wstring);

unsigned long long int std::stoull(string_or_wstring);

float std::stof(string_or_wstring);

double std::stod(string_or_wstring);

In case of failure those functions throw invalid_argument or out_of_range exception.

Example:

cout << "Type the length of array" << endl;

string s;

int n;

getline(cin, s);

try {

 n = std::stoi(s);

}

catch (const exception &e) { // absolutely needed, the human operator may hit a wrong key

 cout << "Wrong" << endl;

}

C++ strings (4)

Prototypes of functions for conversions to string:

string std::to_string(argument);

wstring std::to_wstring(argument);

The argument may be any integer, float or double.

Capacity:

string s1("abc");

int n = s1.length(); // number of characters in string

if (s1.empty())

{……………………. } // true if no characters in string

s1.clear(); // s1 is now empty string

Access:

string s1("abc");

char c1 = s1.at(0); // c1 gets value 'a'. If index is out of scope, throws out_of_range exeption

char c2 = s1[0]; // c2 gets value 'a'. If index is out of scope, the behavior is undefined

s1[0] = 'x'; // s1 is now "xbc"

s1[3] = 'y'; // error, corrupts memory

char c3 = s1.front(); // the first character

char c4 = s1.back(); // the last character

C++ strings (5)

Arithmetics:

string s3 = s1 + s2; // s3 is "abcdef"

s3 += s1; // s6 is now "abcdefabc"

s1 += "y"; // get "abcy", "y" is automatically converted to object of class string

Comparisons:

if (s1 == s2) // also !=, >, <, >=, <=

{……………………}

Example:

string name;

if (name != "John") // automatically converts C string constant to string object

 cout << "Unknown person " << name << endl;

Another option is to use function compare:

int i = s1.compare(s2);

if (i == 0)

 cout << "s1 and s2 are identical" << endl;

else if (i < 0)

 cout << "s1 is less than s2" << endl;

else

 cout << "s1 is greater that s2" << endl;

C++ strings (6)
Find:

int position = find(character_to_find, position_to_start_search);

int position = find(pointer_to_C_string_to_find, position_to_start_search);

int position = find(reference_to_string_to_find, position_to_start_search);

If nothing was found, the return value is string::npos. Examples:

string s("abcdef"), s1 = string("de");

const char *pBuf = "cd";

cout << s.find('e', 0) << endl; // prints 4

cout << s.find(pBuf, 0) << endl; // prints 2

cout << s.find(s1, 0) << endl; // prints 3

if (s.find("klm", 0) == string::npos)

 cout << "not found" << endl;

Function find is to search the first occurrence. With function rfind we may get the last

occurrence.

int position = find_first_of(pointer_to_C_string_of_characters_to_find,

 position_to_start_search);

int position = find_first_not_of(pointer_to_C_string_of_characters_to_find,

 position_to_start_search);

string s("ka3djvn5po9gn");

cout << s.find_first_of("0123456789", 0) << endl; // prints 2 – the position of the first digit

cout << s.find_first_not_of("0123456789", 0) << endl; // prints 0 – the first that is not digit

C++ strings (7)

Copy the contents into buffer:

copy(pointer_to_destination_buffer, number_of_bytes_to_copy,

 position_of_the first_character_to_copy);

Example:

string s("abc");

char buf[10];

s.copy(buf, 2, 0);

buf[2] = 0; // to get a C string, we have to append the terminating zero ourselves

cout << buf << endl; // prints "ab"

Cut a section:

substr(position_of_the_first_character, length);

returns a string consisting of the specified section of original string.

Example:

string name; // first name, middle name, last name like John Edward Smith

int n1 = name.find(' ', 0);

int n2 = name.find(' ', n1 +1);

cout << "The middle name is " << name.substr(n1, n2 – n1) << endl;

C++ strings (8)

Insert:

insert(position_to_insert, reference_to_string_to_insert);

insert(position_to_insert, pointer_to_C_string_to_insert);

The additional characters will be inserted right before the indicated position. Example:

string name("John Smith");

name.insert(5, "Edward ");

cout << "The complete name is " << name << endl; // prints John Edward Smith

Replace:

replace(position_to_start_replacing, number_of_characters_to_replace,

 reference_to_string_that_replaces);

replace(position_to_insert, position_to_start_replacing, number_of_characters_to_replace,

 pointer_to_C_string_that_replaces);

The number of characters that replace the specified section may be any. Examples:

string name("John Edward Smith");

name.replace(5, 7, "");

cout << name << endl; // prints John Smith

name.replace(5, 0, "Edward ");

cout << name << endl; // prints John Edward Smith

C++ strings (9)

Erase:

erase(position_to_start_erasing, number_of_characters_to_erase);

Example:

string name("John Edward Smith");

name.erase(5, 7);

cout << name << endl; // prints "John Smith"

String streams (1)

#include<sstream> // see http://www.cplusplus.com/reference/sstream/stringstream/

String output streams format data exactly as ordinary output streams. But instead of

immediate output they store the formatted data in a string allowing to output them later.

Example:

stringstream sout; // not a predefined object

int nError;

………………………………….

sout << "Failure, error is " << nError << endl; // resulting string is stored in sout

sout << "Press ESC to continue, ENTER to break" << endl;

 // appended to the contents of sout

Thus, with string stream we can collect a longer text. To get the string stored in sout use

method str(), for example:

cout << sout.str(); // prints the result

Method str() with argument of type string replaces the current contents of sout:

string name("John Smith");

sout.str(name); // sout contains only text "John Smith"

sout.str(""); // clears the contents, the argument is implicitly converted to string object

http://www.cplusplus.com/reference/sstream/stringstream/

String streams (2)

String input streams are useful for parsing. Example:

void fun(string name) // name like "John Smith"

{

string first_name ="", last_name = "";

stringstream name_stream(name);

name_stream >> first_name >> last_name;

// now first_name is "John", last_name is "Smith"

………………………………

 // if the last name is not present, last_name remains empty

}

	Slide 1: Namespaces (1)
	Slide 2: Namespaces (2)
	Slide 3: Namespaces (3)
	Slide 4: C++ standard library
	Slide 5: I/O streams (1)
	Slide 6: I/O streams (2)
	Slide 7: I/O streams (3)
	Slide 8: I/O streams (4)
	Slide 9: I/O streams (5)
	Slide 10: I/O streams (6)
	Slide 11: File operations in C (1)
	Slide 12: File operations in C (2)
	Slide 13: File operations in C (3)
	Slide 14: File operations in C (4)
	Slide 15: File operations in C (5)
	Slide 16: File operations in C (6)
	Slide 17: File operations in C++ (1)
	Slide 18: File operations in C++ (2)
	Slide 19: File operations in C++ (3)
	Slide 20: File operations in C++ (4)
	Slide 21: File operations in C++ (5)
	Slide 22: File operations in C++ (6)
	Slide 23: C++ standard exceptions (1)
	Slide 24: C++ standard exceptions (2)
	Slide 25: C++ standard exceptions (3)
	Slide 26: C++ strings (1)
	Slide 27: C++ strings (2)
	Slide 28: C++ strings (3)
	Slide 29: C++ strings (4)
	Slide 30: C++ strings (5)
	Slide 31: C++ strings (6)
	Slide 32: C++ strings (7)
	Slide 33: C++ strings (8)
	Slide 34: C++ strings (9)
	Slide 35: String streams (1)
	Slide 36: String streams (2)

